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Abstract—This research presents a novel portfolio optimization framework using deep reinforcement learning (DRL). 

Traditional methods rely on static models or single-agent strategies, which struggle with market dynamics. We propose 

a dynamic system to address this by selecting the best-performing DRL agent based on recent market conditions. The 

framework evaluates five DRL agents, A2C, SAC, TD3, DDPG, and PPO, allocating portfolio weights based on short-

term performance. A selection mechanism identifies the top agent using cumulative returns over the prior ten days, 

leveraging multiple agents' strengths. This adaptive approach embraces the philosophy that no single strategy 

consistently outperforms in all market conditions, making flexibility and continuous learning essential for robust 

portfolio management. Backtesting on Dow Jones data shows our method enhances cumulative returns and risk-

adjusted performance, achieving an 11.43% average annual return, 38.29% cumulative returns, and a 0.832 Sharpe 

ratio, outperforming individual DRL agents. 
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I. INTRODUCTION 

In the dynamic and constantly changing financial 
markets, effective portfolio management remains 
essential for investors seeking to maximize returns 
while managing risks effectively. Conventional 
portfolio optimization methods often rely on static 
models, which may fall short of accommodating these 
markets' fluid and unpredictable nature [1]. To address 
this, sequence processing techniques such as linear 
vectors offer a straightforward and efficient way to 
handle financial datasets. These methods are 
particularly suited for portfolio optimization tasks 
requiring low computational complexity, providing a 
practical approach to analyzing time-dependent 
patterns in economic data, cryptocurrency, and 
portfolio signals [2]. By leveraging vectorization and 
sampling strategies, linear vectors facilitate extracting 
meaningful temporal patterns essential for informed 
decision-making [3]. 

As financial markets grow increasingly complex, 
electronic consulting systems are pivotal in 
transforming intricate financial data into actionable 
investment strategies. The rapid advancement of 
technology has made it imperative for investors to adopt 
sophisticated analytical tools to navigate modern 
market challenges [4]. Among these tools, deep 
reinforcement learning (DRL) has gained prominence 
for its ability to adapt and learn in dynamic 
environments. In financial applications, DRL enables 
adaptive decision-making by continuously analyzing 
historical trends and real-time market data, allowing 
investors to respond proactively to market fluctuations 
[5], [6]. In addition to finance, DRL has shown 
significant promise in areas like fog computing, 
optimizing task offloading between edge and cloud 
devices for latency-sensitive applications [7], and 
agricultural land use modeling, which helps simulate 
climate change adaptation strategies [8]. 

Financial markets are highly volatile, with prices 
influenced by economic events, investor sentiment, and 
global trends. Market analysis primarily relies on two 
approaches to navigate this complexity: technical 
analysis, which focuses on historical price patterns and 
indicators, and fundamental analysis, which 
incorporates broader economic factors, such as news 
sentiment and financial reports. This research primarily 
adopts a technical analysis perspective to evaluate the 
performance of the proposed multi-agent reinforcement 
learning framework compared to common DRL-based 
approaches (A2C [9], PPO [10], DDPG [11], TD3 [12], 
SAC [13]). By concentrating on technical features, we 
aim to assess how effectively the model adapts to 
market fluctuations and enhances portfolio returns. 
Policy-based DRL methods are particularly well-suited 
for financial markets because they handle non-
stationarity and sequential dependencies in market data. 
Unlike value-based methods, which struggle with 
instability in dynamic environments, policy-based 
approaches optimize decision-making directly, 
ensuring more robust adaptation to market trends and 
improving long-term performance. 

Despite advancements in financial modeling, 
portfolio optimization still faces significant challenges. 

Traditional techniques, such as the Max-Sharpe 
method, rely on fixed statistical assumptions, making 
them less effective in dynamic markets [14]. These 
static models struggle with rapid fluctuations, limiting 
their real-world applicability [15]. Similarly, many 
DRL strategies use a single-agent framework, which 
may underperform in varying market conditions since 
no single strategy consistently excels across all 
scenarios. Another key challenge is the lack of short-
term adaptability in DRL models, as they often 
prioritize long-term rewards while failing to capture 
short-term market trends essential for active portfolio 
management. Without immediate responsiveness, these 
models risk missing opportunities or failing to mitigate 
short-term risks. Furthermore, the effectiveness of DRL 
models compared to traditional portfolio optimization 
methods, such as the Equal Weights Method and the 
Max-Sharpe Model (Markowitz Model), remains 
underexplored, making it difficult to fully assess their 
advantages in real-world investment scenarios [1], [2]. 

To address these challenges, we propose a multi-
agent DRL framework that dynamically selects the 
best-performing agent based on recent market 
conditions. The key contributions of this work are as 
follows: 

 A novel adaptive portfolio optimization framework 
that evaluates and selects from multiple DRL 
agents (A2C, SAC, TD3, DDPG, PPO) based on 
short-term performance. 

 A short-term agent selection mechanism that 
dynamically chooses the top-performing model 
over a ten-day window, improving responsiveness 
to market fluctuations. 

 Comprehensive benchmarking against traditional 
portfolio models, including the Equal Weights 
Method and the Max-Sharpe Method (Markowitz 
Model), demonstrates the superiority of our 
adaptive strategy. 

 Extensive empirical evaluation using historical 
Dow Jones data shows that our approach enhances 
cumulative returns, risk-adjusted performance, and 
profitability. 

The structure of this paper is as follows: Section II 
reviews related work on portfolio optimization and 
reinforcement learning. Section III outlines our 
methodology, including data preprocessing, model 
training, and the agent selection mechanism. Section IV 
discusses the experimental results and system 
performance evaluation. Section V offers an in-depth 
discussion of the findings. Finally, Section VI 
concludes the study and highlights potential directions 
for future research. 

II. RELATED WORKS 

Recent advancements in portfolio management 
have seen a surge in the application of innovative 
reinforcement learning (RL) architectures. Various 
studies have explored diverse RL-based methodologies 
to address dynamic financial markets, optimize 
portfolio allocation, and enhance risk-adjusted returns. 
These works highlight the integration of reinforcement 
learning with advanced techniques such as self-
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attention mechanisms, sentiment analysis, multi-agent 
systems, and deep learning frameworks. A summary of 
works from 2020 to 2025, illustrating significant 
contributions in portfolio optimization, is presented in 
Table I. Each study is categorized based on the year, 
authors, methods, and key advantages. 

TABLE I.  SUMMARY OF RELATED WORKS IN PORTFOLIO 

MANAGEMENT. 

Year Authors Method Advantages 

2021 
Betancourt and 
Chen [16] 

Method integrating new 
assets without retraining 

High daily returns 
achieved 

2021 
Katongo and 
Bhattacharyya 
[17] 

Deep RL algorithms with 
neural network 
autoencoders for tactical 
asset allocation 

Improved risk-adjusted 
returns on Dow Jones 

2021 
Koratamaddi et 
al. [18] 

RL approach 
incorporating market 
sentiment 

Superior Sharpe ratio 
and annualized returns 
compared to baselines 

2022 
Lim, Cao, and 
Quek [19] 

RL agent combined with 
LSTM for dynamic 
portfolio rebalancing 

Significant return 
improvements 

2022 
Kabbani and 
Duman [20] 

TD3 algorithm for 
automating stock trading 

High Sharpe ratio 
achieved 

2023 Zhao et al. [21] 
Deterministic policy 
gradient RL method with 
self-attention mechanism 

Excellent performance 
across financial datasets 

2023 Li et al. [22] 

LSRE-CAAN 
framework for high-
frequency 
cryptocurrency data 

High returns with lower 
risk metrics 

2023 Ma et al. [23] 

Multi-agent system with 
trend consistency 
regularization for market 
status switching 

Effective results in 
Chinese Stock Market 

2023 Hao et al. [24] 
Fuzzy vectors with 
ensemble RL methods 
applied to SP100 stocks 

Outperformed 
benchmarks over 11 
years 

2020 Zhang et al. [25] 

Cost-sensitive portfolio 
selection with a two-
stream portfolio policy 
network 

Effective management 
of transaction and risk 
costs 

2020 
Soleymani and 
Paquet [26] 

DeepBreath framework 
combining autoencoder 
and CNN with 
blockchain 

Solved settlement issues 
and enhanced policy 
enforcement 

2020 Wu et al. [27] 
GRU-based adaptive 
stock trading strategies 

Outperformed 
traditional methods 

2021 Wu et al. [28] 
CNN and RNN models 
with Sharpe ratio-based 
reward function 

Improved returns and 
reduced drawdown risks 

2021 Carta et al. [29] 
Multiple deep neural 
networks with a reward-
based classifier 

Superior performance 
on S&P 500 

2022 Lin et al. [30] 
Multi-agent RL 
framework with nested 
agent structure 

Outperformed 
traditional portfolio 
selection strategies 

2023 
Jang and Seong 
[31] 

Modern portfolio theory 
with RL and Tucker 
decomposition for 
multimodal inputs 

Outperformed state-of-
the-art algorithms 

2023 Day et al. [32] 

Dynamic trading strategy 
model incorporating 
technical indicators and 
covariance 

High annualized and 
cumulative returns on 
ESG Select Index ETF 

2023 Yu et al. [33] 
Nested RL method with 
weight random selection 
strategy 

Enhanced investor 
profits across various 
markets 

2024 Li and Hai [34] 

Multi-agent deep RL 
model with additional 
stock indices and self-
attention networks 

Improved portfolio 
management and risk 
mitigation 

2024 Jiang et al. [35] 
Model-free DRL 
framework for portfolio 
selection 

Superior performance, 
handles high-
dimensional data, 
includes transaction 
costs 

2024 Chen et al. [36] 
RL with mean-variance 
model for dynamic risk 
preferences  

Outperforms buy-and-
hold, adjusts risk in 
volatile markets 

2025 
Aritonang et al. 
[37] 

Evaluates hidden-layer 
configurations in RL 
models 

Optimizes portfolios, 

identifies ideal 

complexities for 

algorithms 

2025 Song et al. [38] 
RL with deterministic 
state transitions 

Enhances feature 
extraction, excels in 
cryptocurrency 
backtesting 

2025 Sattar et al. [39] 
RMS-Driven DRL for 
optimized portfolio 
management 

Integrates sentiment 
analysis, improves risk-
return in dynamic 
markets 

 

III. METHODS 

In this research, two algorithms have been 
independently designed to ensure optimal decision-
making for maximizing cumulative returns in stock 

price prediction. Five RL algorithms, A2C, PPO, 
DDPG, TD3, and SAC, have been utilized. Each 
algorithm has strengths and limitations, demonstrating 
varied performance under different market conditions. 

The A2C and PPO agents, leveraging stochastic 
policies and policy optimization, quickly adapt to 
market changes and perform better in volatile and 
turbulent environments. On the other hand, DDPG and 
TD3 agents, employing neural networks in continuous 
spaces, excel in gradually shifting markets and are more 
suitable for long-term and stable scenarios. The SAC 
agent seeks more diverse policies, enabling it to make 
robust decisions under uncertainty. By maximizing 
entropy, SAC proves to be particularly effective in 
uncertain conditions. 

As noted, due to the highly dynamic nature of the 
market and the structural differences between the 
agents, it is unclear before trading which agent will 
perform best for predicting prices at time t+1. Thus, 
selecting a single agent at the time "t" is challenging, 
and an incorrect choice can reduce cumulative returns. 
To address this issue, two algorithms are proposed in 
this paper: 

1. Averaging Approach (Proposed Method 1) 

In the first algorithm, the output of all agents is 
averaged. Specifically, each agent suggests a weight for 
each stock at time t+1, and the average of these weights 
is considered the final weight for t+1. The proposed 
weight by each agent indicates the proportion of that 
stock in the portfolio. If the final weight equals the 
weight at time "t," it implies that the stock should 
remain unchanged in the portfolio (i.e., a "hold" action). 
If the final weight increases, it indicates a purchase is 
needed, with the purchase amount calculated based on 
the weight increase. Conversely, if the final weight 
decreases, it suggests selling a portion of the stock, with 
the amount determined by the weight reduction. The 
total weights of all stocks always sum to 1. Averaging 
the outputs of multiple agents reduces the error caused 
by the poor performance of a single agent and leverages 
the predictive capabilities of each algorithm on 
complex data. 

2. Main Proposed Method 

The second proposed algorithm selects a single 
agent as the decision-maker for predicting stock 
weights at time t+1. This selection is based on market 
conditions at that moment. The process involves 
monitoring agents' historical performance over the past 
"n" days. In other words, the agent that achieved the 
highest cumulative return over the last "n" days is 
chosen to decide for time t+1. Selecting the top-
performing agent over the past "n" days ensures that 
decisions align with current market conditions. This 
approach is efficient for dynamically adapting to 
market changes. For instance, if the market transitions 
to a volatile or stable phase, a new agent suited to these 
conditions will be quickly selected. Additionally, this 
method excludes underperforming agents from 
influencing the final decision, preventing their negative 
impact. The main proposed method will be further 
detailed, as illustrated in Figure 1. 
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Figure 1.  General Schema of the Proposed Consulting System. 

A. Stock Data Preparation 

The stock data is initially represented in dimensions 
S×K×5, where S represents the number of samples, 
each covering a moment t. K is the number of stocks, 
and 5 illustrates various features of each stock, 
including the opening price, closing price, highest price, 
lowest price, and trading volume. 

B. Stock Filtering 

At this stage, the closing prices of stocks, 
represented as S×K×1, are compressed using an 
Autoencoder. During this step, K′ stocks with the 
lowest volatility are selected. After applying this 
compression, the output dimensions are reduced to 
S×K′×1, where K′ is the number of selected stocks with 
the lowest volatility. 

C. Primitive Indicator Decision 

At this stage, technical indicators are calculated for 
each stock to analyze stock prices better. These 
indicators include technical tools that help analysts 
assess market trends and the current state of stocks. The 

indicators are Average True Range (ATR), Bollinger 
Bands Width (BBW), On-Balance Volume (OBV), 
Chaikin Money Flow (CMF), Moving Average 
Convergence Divergence (MACD), Average 
Directional Index (ADX), Relative Strength Index 
(RSI), Commodity Channel Index (CCI), Exponential 
Moving Average (EMA), and Simple Moving Average 
(SMA). After calculating these indicators, the data 
dimensions are adjusted to S×K×10, where S is the 
number of samples, K is the number of stocks, and 10 
represents the number of calculated indicators. This 
stage is an effective tool for a more precise analysis of 
price trends and identifying market signals. 

D. High-Level Indicator Decision Phase 

After extracting the technical indicators, another 
Autoencoder compresses them to reduce data 
dimensions and increase model efficiency. Dimension 
reduction allows the model to focus only on the main 
and more relevant features instead of processing many 
complex ones, thereby improving the accuracy and 
efficiency of agent learning. After this compression, the 
number of indicators is reduced from 10 to 4, and the 
data dimensions become S×K×4. 

E. Integration of Data and Indicator Decision 

The processed and compressed technical indicators 
and data from each section are integrated at this stage. 
This process, called "Row Data and Indicators Data 
Concatenation," combines various data, including stock 
prices, compressed technical indicators, and selected 
stocks, into a single dataset. This integration prepares 
the data for use in reinforcement learning models, 
enabling the model to utilize all features cohesively for 
more accurate predictions. After this integration, the 
output dimensions change to S×K′×9, where S is the 
number of samples, K′ is the number of selected stocks, 
and 9 represents the number of different features, 
including stock prices and indicators for the stocks. 

F. Data Splitting 

Next, the data is divided into two parts: train and 
test. 80% of the data is used for training, and the 
remaining 20% is used for testing. This division is not 
done randomly because the data is time-series and has 
temporal dependencies. The data must be split 
sequentially and chronologically to preserve these 
dependencies and accurately simulate market trends. 

G. Agent Policy Learning 

DDPG, A2C, PPO, SAC, and TD3 are all Actor-
Critic-based algorithms that leverage state-action pairs 
to learn optimal policies and Q-values. While DDPG 
and TD3 are explicitly designed for continuous action 
spaces, TD3 offers excellent stability by reducing 
overestimation in Q-value calculations. SAC, also 
tailored for constant domains, promotes exploration 
through entropy maximization. On the other hand, A2C 
and PPO are versatile and can be applied in discrete and 
continuous spaces. A2C enhances learning through 
Advantage estimation, whereas PPO ensures excellent 
stability by constraining policy updates. 

Regarding On-Policy versus Off-Policy 
approaches, A2C and PPO are On-Policy, relying 
exclusively on data from the current policy. This 
ensures higher stability but results in lower data 
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efficiency. Conversely, DDPG, TD3, and SAC are Off-
Policy algorithms that utilize Replay Buffers, enabling 
them to leverage past and recent data. This makes 
learning in complex environments more efficient, 
though implementation complexity increases. 

Trajectories play a crucial role in these algorithms. 
Trajectories consist of states, actions, rewards, and 
following states generated by the agent's interaction 
with the environment. In On-Policy algorithms like 
A2C and PPO, trajectories are collected directly from 
the agent's current policy, ensuring stable learning but 
requiring frequent environmental sampling. However, 
off-policy algorithms such as DDPG, TD3, and SAC 
can store trajectories from previous policies in a Replay 
Buffer, enhancing data efficiency and facilitating 
learning in intricate environments. 

Additionally, these algorithms adopt various 
Backup Strategies for value updates. A2C and PPO 
utilize Monte Carlo methods to accumulate total 
rewards for a trajectory, whereas DDPG, TD3, and 
SAC employ Bootstrapping, which estimates next-state 
values to speed up and optimize learning. SAC 
combines both methods to strike a balance between 
stability and accuracy. 

Training data is employed to teach agents within the 
reinforcement learning model at this stage. This data 
acts as the environment where agents interact. The 
primary objective is for the agents to learn optimal 
decision-making strategies to enhance portfolio 
performance. Key reinforcement learning concepts, 
State, Action, Reward Function, and Environment, are 
defined as follows: 

1) State 
The state of the environment represents the 

information available to agents at any moment for 
decision-making. In this problem, the state comprises 
features related to stock prices, technical indicators, and 
processed data. 

2) Action 
The action represents the decision made by the 

agent at each time step. Here, it refers to assigning 
weights to each stock in the investment portfolio, where 
these weights determine the percentage of capital 
allocated to each stock. The action vector includes 
weight values for all stocks in the portfolio. 

3) Reward 
When an agent takes an action, the environment 

provides a reward indicating the agent's performance. 
In this case, the reward corresponds to the profit or loss 
from changes in portfolio weights. Higher profits yield 
positive rewards, while losses result in negative 
rewards. This function motivates agents to adopt 
strategies that maximize cumulative returns in the 
market. 

4) Environment 
The training data serves as a simulated environment 

for agent learning. Agents can evaluate their actions, 
observe performance results, and measure their impact 
on the portfolio. The environment reflects real-world 
stock market conditions, including prices, volatility, 
and other features. 

The goal of training agents is to identify an optimal 
policy that enables the agent to select the best possible 
action for each state to maximize cumulative returns. 
During training, agents observe the market state, 
perform actions, and improve their policies based on 
received feedback (rewards). This process iteratively 
continues until agents develop strategies capable of 
achieving optimal performance in dynamic and 
complex market conditions. 

H. Consulting System 

After training agents and obtaining their respective 
optimal policies, a Consulting System is used for 
decision-making at time t+1. This system selects the 
best-performing agent based on cumulative returns over 
the past "n" days. The selection criterion is the 
cumulative income each agent's policy generated 
during the previous period. The agent with the highest 
cumulative income is chosen for t+1. The selected 
agent's proposed weights, representing the percentage 
of investment in each stock, are used as the final 
decision. These decisions determine which stocks 
should be bought, sold, or held. 

The selection and decision-making process is 
applied iteratively on test data to calculate the system's 
overall cumulative income. The Consulting System 
aims to outperform the best individual agent by 
achieving a final cumulative income that surpasses the 
maximum cumulative income of any single agent. Once 
this process is complete and satisfactory performance is 
ensured, the Consulting System is deployed in real-
world market conditions. Utilizing trained agents, the 
system provides recommendations for stock purchases, 
sales, or holdings, ultimately optimizing investments 
and maximizing cumulative income. 

I. Hyperparameter Configuration 

The selection and adjustment of hyperparameters 
are critical to steering the learning mechanisms of 
reinforcement learning agents, particularly in the 
intricate domain of portfolio optimization. By fine-
tuning these parameters, the agents can better enhance 
their decision-making processes. Tables II and III 
present the tailored hyperparameter setup for the 
proposed method. 

TABLE II.  HYPERPARAMETERS USED FOR EACH DRL 

AGENT. 

Hyperparameter A2C PPO DDPG TD3 SAC 

Learning Rate 0.001 0.001 0.001 0.001 0.001 

Batch Size N/A 100 100 100 100 

Buffer Size N/A N/A 50,000 50,000 50,000 

Entropy 
Coefficient 

0.005 0.005 N/A N/A auto_0.1 

Learning Starts N/A N/A N/A N/A 100 

n_steps 5 5 N/A N/A N/A 

Total Timesteps 10,000 10,000 10,000 10,000 10,000 

TABLE III.  STOCK TRADING ENVIRONMENT PARAMETERS. 

Parameter Value 

hmax 500 

initial_amount 1,000,000 

transaction_cost_pct 0.001 

stock_dim 20 

tech_indicator_dim 4 
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TABLE IV.  PERFORMANCE METRICS AND THEIR MATHEMATICAL FORMULATIONS UTILIZED IN THE EVALUATION OF THE PROPOSED 

PORTFOLIO OPTIMIZATION MODEL. 

Metric Formula Description 

Annual Return 𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛 = (
𝐸𝑛𝑑 𝑉𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒
)

1

𝑛
− 1              (1) Measures the return achieved over one year. 

Cumulative Returns 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 =
𝐸𝑛𝑑 𝑉𝑎𝑙𝑢𝑒−𝑆𝑡𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒

𝑆𝑡𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒
(2) Reflects the total return over the evaluation period. 

Annual Volatility 𝐴𝑛𝑛𝑢𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 = 𝜎 × √252                      (3) Indicates the standard deviation of returns over a year. 

Average Daily 
Returns 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 =
1

𝑛
∑ 𝑅𝑖

𝑛
𝑖=1              (4) The mean return achieved on a daily basis. 

Sharpe Ratio 𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝐸[𝑅𝑝]−𝑅𝑓

𝜎𝑝
                                 (5) Evaluates risk-adjusted return relative to volatility. 

Calmar Ratio 𝐶𝑎𝑙𝑚𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛

𝑀𝑎𝑥 𝑑𝑟𝑎𝑤𝑑𝑜𝑤𝑛
                       (6) Compares annual return to the maximum observed drawdown. 

Max Drawdown 𝑀𝑎𝑥 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛 = 𝑚𝑖𝑛𝑡 (
𝑇𝑟𝑜𝑢𝑔ℎ𝑡−𝑃𝑒𝑎𝑘𝑡

𝑃𝑒𝑎𝑘𝑡
)     (7) Captures the largest drop in value from a peak to a trough. 

Omega Ratio 𝑂𝑚𝑒𝑔𝑎 𝑅𝑎𝑡𝑖𝑜 =
∫ [1−𝐹(𝑥)]𝑑𝑥

∞

𝑅𝑓

∫ 𝐹(𝑥)𝑑𝑥
𝑅𝑓

−∞

                           (8) Measures gains relative to losses using the cumulative distribution function. 

Sortino Ratio 𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =
𝐸[𝑅𝑝]−𝑅𝑓

𝜎𝑑
                                 (9) Focuses on downside risk by considering negative returns only. 

Skew 𝑆𝑘𝑒𝑤 =
𝐸[(𝑅𝑝−𝜇)

3
]

𝜎3
                                           (10) Quantifies the asymmetry of the return distribution. 

Kurtosis 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐸[(𝑅𝑝−𝜇)

4
]

𝜎4
                                     (11) Indicates the "tailedness" or extreme values in the return distribution. 

Tail Ratio 𝑇𝑎𝑖𝑙 𝑅𝑎𝑡𝑖𝑜 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑇𝑜𝑝 5% 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐵𝑜𝑡𝑡𝑜𝑚 5% 𝑅𝑒𝑡𝑢𝑟𝑛𝑠
     (12) Compares the best 5% of returns to the worst 5%. 

Daily Value at Risk 𝑉𝑎𝑅𝛼 = −𝑖𝑛𝑓{𝑥|𝐹(𝑥) ≥ 𝛼}                           (13) 
Estimates the maximum potential loss over 24 hours at a specific confidence 

level. 

Alpha 𝛼 = 𝑅𝑝 − [𝑅𝑓 + 𝛽(𝑅𝑚 − 𝑅𝑓)]                        (14) Represents the excess return relative to a benchmark market index. 

Beta 𝛽 =
𝐶𝑜𝑣(𝑅𝑝,𝑅𝑚)

𝑉𝑎𝑟(𝑅𝑚)
                                                  (15) Measures portfolio volatility relative to the market. 

J. Aggregation and Evaluation 

The aggregation and evaluation processes are 
fundamental components of our proposed method, 
ensuring that the combined reinforcement learning 
agents perform effectively in portfolio asset allocation. 
This section outlines the key steps involved in 
integrating agent outputs and assessing their overall 
performance. 

1) Performance Metrics 
We employed a range of performance metrics to 

comprehensively assess the proposed method. These 
metrics are summarized in Table IV. Each metric 
provides unique insights into the model’s ability to 
manage risk and optimize returns. 

2) Comparative Analysis 
The combined agent strategy is benchmarked 

against individual agents and traditional portfolio 
allocation methods. Integrating predictions from 
multiple agents provides a significant advantage, 
showcasing their collective value in improving 
outcomes. 

K. Time Complexity Analysis 

Understanding the computational efficiency of RL 
algorithms is crucial for evaluating their practical 
applicability. Table V presents the overall time 
complexity and the best-case and worst-case scenarios 
for the DRL methods used in this research. The 
complexity of each algorithm is influenced by factors 
such as the total timesteps (T), state space dimension 
(S), action space dimension (A), neural network layers 
(L), and number of neurons per layer (N). Among these, 
PPO exhibits the highest computational complexity due 
to additional iterative updates per epoch (I), leading to 
a worst-case complexity of 𝑂(𝑛4) . The proposed 
method executes five agents serially in a loop and has a 
worst-case complexity of 𝑂(𝑛4) , similar to PPO. 
However, when parallel processing is feasible, the 
proposed method's complexity improves to 𝑂(𝑛3)  in 
the worst case and 𝑂(𝑛2) in the best case, making it 

more computationally efficient under optimized 
conditions. 

TABLE V.  TIME COMPLEXITY OF THE PROPOSED METHOD. 

Algorithm Overall Time Complexity 
Best 
Case 

Worst 
Case 

A2C 𝑂(𝑇 × (𝑆 + 𝐴) × 𝐿 × 𝑁2)  𝑂(𝑛2) 𝑂(𝑛3) 

PPO 𝑂(𝐼 × 𝑇 × (𝐿𝑁2 + 𝐵𝐷))  𝑂(𝑛3) 𝑂(𝑛4) 

DDPG 𝑂(𝑇 × (𝐿 ∙ 𝑛 ∙ 𝐷 + 𝐵 ∙ (𝐿 ∙ 𝑛2)))  𝑂(𝑛2) 𝑂(𝑛3) 

TD3 𝑂(𝑇 × (𝐿 ∙ 𝑛 ∙ 𝐷 + 𝐵 ∙ (𝐿 ∙ 𝑛2)))  𝑂(𝑛2) 𝑂(𝑛3) 

SAC 𝑂(𝑇 × (𝐿 ∙ 𝑛 ∙ 𝐷 + 𝐵 ∙ (𝐿 ∙ 𝑛2)))  𝑂(𝑛2) 𝑂(𝑛3) 

Proposed 
Method 

Five agents executed serially in a 
loop multiple times 

𝑂(𝑛3) 𝑂(𝑛4) 

IV. RESULTS 

This section presents the outcomes of our 
experiments, detailing the dataset characteristics and 
analyzing the performance of individual RL agents 
alongside a comparative assessment of various 
strategies. 

A. Dataset Overview 

The dataset used in this research was acquired via 
the FinRL library [40] using the Yahoo Finance API, 
which provides free access to data on the Dow Jones 
Industrial Average (DJIA). The DJIA encompasses 30 
leading companies listed on U.S. stock exchanges. 
From December 31, 2008, to March 30, 2024, the 
dataset contains 4035 daily records for each stock. 
These records include key attributes such as opening, 
closing, highest and lowest prices, and trading volume. 

B. Individual Agent Performance 

Table VI summarizes the performance metrics for 
each RL agent and the proposed method. Figure 2 
highlights the backtest results on training data, where 
all agents achieved cumulative income exceeding seven 
times the initial value. While these figures are 
unrealistic due to the overlap between training and 
testing datasets, they provide a valuable benchmark for 
comparing agent performance. Among the agents, TD3 
demonstrated relatively superior performance in this 
phase.
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TABLE VI.  PERFORMANCE METRICS FOR DIFFERENT REINFORCEMENT LEARNING AGENTS AND PROPOSED METHODS ON THE DOW JONES 

INDUSTRIAL AVERAGE DATASET (2009–2024). 

Evaluation Metrics A2C Model PPO Model DDPG Model TD3 Model SAC Model Proposed Method 1 Main Proposed Method 
Annual return 0.10355 0.088963 0.109103 0.093883 0.104561 0.100179 0.114276 

Cumulative returns 0.343403 0.2909 0.363759 0.308451 0.347093 0.331145 0.382903 
Annual volatility 0.139666 0.139456 0.142429 0.147605 0.13928 0.140483 0.142167 

Sharpe ratio 0.775404 0.680907 0.798369 0.681806 0.783763 0.749933 0.832301 
Calmar ratio 0.580168 0.578662 0.610732 0.451763 0.59372 0.57494 0.693455 

Stability 0.439511 0.521288 0.522191 0.253352 0.505337 0.459214 0.639741 
Max drawdown -0.17848 -0.15374 -0.17864 -0.20781 -0.17611 -0.17424 -0.16479 

Omega ratio 1.141502 1.122649 1.144586 1.122642 1.141947 1.135974 1.153198 
Sortino ratio 1.117814 0.979952 1.146267 0.975362 1.122939 1.076073 1.20474 

Skew -0.14533 -0.12615 -0.17648 -0.17439 -0.1918 -0.16957 -0.13656 
Kurtosis 1.844322 1.724517 1.561056 1.654512 1.784828 1.747927 1.798994 
Tail ratio 1.048237 1.024539 1.028713 1.077653 0.969984 0.999069 1.005422 

Daily Value at risk -0.01717 -0.01719 -0.01749 -0.0182 -0.01711 -0.01728 -0.01744 
Alpha 0 0 0 0 0 0 0 
Beta 1 1 1 1 1 1 1 

 

Figure 2.  Backtest on Train Data and Cumulative Return by RL Agents.

Moreover, Figure 3 examines the backtesting 
results on unseen data from 2021 to 2024, comparing 
five RL agents, the proposed algorithm, and a strategy 
averaging the weights of all agents. Although TD3 
excelled during training, DDPG performed better 
during testing. The weight-averaging algorithm 
exhibited average performance, whereas the proposed 
algorithm, which dynamically selects the best-
performing agent based on the previous 10 days, 
outperformed all methods. It achieved a cumulative 
profit of 38.29%, the highest among all strategies. 

Figures 4 through 10 collectively highlight the 
effectiveness and robustness of the proposed algorithm 
in dynamic portfolio management. Figure 4 illustrates 
daily portfolio weight adjustments, detailing buy, hold, 
and sell actions, while Figure 5 provides a weekly 
aggregation of these actions. Figure 6 demonstrates the 
percentage usage of agents throughout each working 
week, showcasing the dynamic adaptability of the 
proposed approach. Table VII further details the usage 
percentages of each agent over the 765-day backtest 
period, showing that the proposed method utilized the 
DDPG algorithm, the top-performing agent, 21.48% of 
the time, and the PPO algorithm, the least effective, 
12.21% of the time. Figure 7 showcases the percentage 
of stock selections by the agents on testing data, 
emphasizing the method's adaptability in leveraging 
diverse strategies. 

TABLE VII.  USAGE PERCENTAGES OF EACH ALGORITHM. 

Algorithm A2C PPO DDPG TD3 SAC 

Usage Percent 19.33% 12.21% 21.48% 30.47% 16.51% 

Figure 8 demonstrates the algorithm's capability to 
deliver consistent returns through its monthly and 
annual profit percentages on testing data. Finally, 

Figure 9 compares the cumulative returns of the 
proposed algorithm with the Dow Jones index, clearly 
underscoring the superiority of the proposed method in 
achieving higher profits and effectively managing risk 
over the testing period. 

C. Performance Evaluation Against Traditional 

Portfolio Models 

1) Equal Weights Method 
In this approach, all assets in the portfolio are 

assigned equal weights. It is one of the most 
straightforward asset allocation strategies, as it does not 
involve any optimization based on asset characteristics. 
The main advantage of this method lies in its simplicity 
and the fact that it does not require historical data to 
estimate asset returns and risks. However, this approach 
may not yield optimal performance, as assigning equal 
weights to all assets can result in an inappropriate risk 
profile portfolio. 

2) Max-Sharpe Method (Markowitz Model) 
The second approach is based on the Markowitz 

model and aims to maximize the Sharpe ratio defined in 

Equation 5 (Table IV). Where 𝐸[𝑅𝑝]  represents the 

expected return of the portfolio, 𝑅𝑓  is the risk-free 

return rate, and 𝜎𝑝  denotes the standard deviation of 

the portfolio return, which serves as a measure of risk. 

In this method, the optimal portfolio weights are 
determined using training data. These weights are then 
applied to test data to evaluate actual performance. The 
optimization process involves calculating the mean 
return and the covariance matrix of assets based on the 
training dataset. Once the optimal weights are 
determined, they are applied to the test dataset, and 
cumulative returns are computed.
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Figure 3.  Backtest on Test Data and Cumulative Return by RL Agents and Proposed Methods. 

 

Figure 4.  Daily Portfolio Weight Changes: 6 Example Stocks. 

 

Figure 5.  Weekly Portfolio Weight Changes: 6 Example Stocks. 

 

Figure 6.  The Percentage Usage of Agents Throughout Each Working Week.
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Figure 7.  Stock Purchase Percentage per Agent. 

 

Figure 8.  Monthly and Annual Returns of Proposed Method. 

Figure 9.  Comparison of Cumulative Returns of Proposed Methods and Dow Jones.

Figure 10 illustrates the asset weights assigned in 
both methods. As observed, the Equal Weights method 
distributes identical weights to all assets. In contrast, 
the. In contrast, the Max-Sharpe method assigns 
varying weights based on training data, adjusting 
allocations according to the optimization process. 

Table VIII presents the cumulative returns of the 
proposed method compared to the Equal Weights and 
Max-Sharpe strategies on test data from March 29, 
2021, to March 28, 2024. The results indicate that the 
proposed method significantly outperforms both 
alternative approaches, achieving a cumulative return 
of 38.2%, compared to 28.2% for the Max-Sharpe 
model and 27.3% for the Equal Weights strategy. 

 

Figure 10.  Asset Weights Allocation in Equal Weights and Max-

Sharpe Methods. 

TABLE VIII.  CUMULATIVE RETURNS OF DIFFERENT PORTFOLIO 

STRATEGIES ON TEST DATA. 

Method Cumulative Return 

Equal Weights 27.3% 

Max-Sharpe 28.2% 

Proposed Method 38.2% 

V. DISCUSSION 

A. Effectiveness of a Dynamic Multi-Agent DRL 

Approach 

This paper highlights the substantial potential of 
DRL in investment portfolio optimization. By 
employing a framework that dynamically identifies and 
selects the most effective DRL agent over short-term 
intervals, the system can adapt swiftly to fluctuating 
market conditions. This adaptability capitalizes on the 
unique strengths of various DRL models in real-time, 
which collectively contribute to improved portfolio 
outcomes. 

The choice of policy-based DRL methods in this 
framework is motivated by their ability to address key 
financial market challenges, particularly non-
stationarity and sequential dependencies in market data. 
Unlike value-based approaches, which struggle with 
instability due to violating the independent and 
identically distributed (I.I.D.) assumption, policy-based 
methods optimize decision-making directly, ensuring 
smoother learning. This characteristic is particularly 
crucial in dynamic and high-volatility markets, where 
abrupt changes in asset prices require continuous 
adaptation. By leveraging policy optimization 
techniques, these methods enable more stable and 
responsive trading strategies, improving overall 
portfolio resilience. 

This research enhances adaptability to shifting 
market conditions by integrating multiple policy-based 
DRL agents in a dynamic selection framework. 
Switching between policy-based agents allows for a 
more seamless transition between market regimes, 
improving long-term stability and returns. 
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Notably, the multi-agent DRL strategy employed 
herein offers greater resilience and robustness than 
relying on a single agent, as evidenced by enhanced 
risk-adjusted performance metrics. Key indicators, 
including higher Sharpe and Sortino ratios, underscore 
the practical viability of this method, which achieves a 
favorable balance between return generation and risk 
mitigation. This makes the approach appealing for 
investors pursuing growth and stability in volatile 
markets. 

This research utilized five DRL agents, A2C, PPO, 
DDPG, TD3, and SAC, to optimize portfolio 
allocations. Each algorithm excels under specific 
financial conditions due to its distinctive attributes. 
Table IX summarizes these advantages, demonstrating 
how agents leverage their unique strengths to perform 
effectively across diverse market environments. After 
training and backtesting using historical data, the results 
shown in Table X indicate the cumulative returns 
achieved by each agent. The challenge lies in accurately 
selecting the top-performing agent daily to maximize 
overall portfolio returns. 

TABLE IX.  ADVANTAGES OF REINFORCEMENT LEARNING 

ALGORITHMS FOR PORTFOLIO OPTIMIZATION. 

Advantages Algorithms 

Stable, cost-effective, faster, and works better 
with large batch sizes 

A2C 

Improve stability, less variance, simple to 
implement 

PPO 

Better at handling high-dimensional continuous 
action spaces 

DDPG 

Improve network stability in complex 
environments 

TD3 

Improve stability SAC 

TABLE X.  CUMULATIVE RETURNS BY MODEL (MARCH 29, 
2021 – MARCH 28, 2024). 

Model Cumulative Return (%) 

PPO Model 29.0% 

TD3 Model 30.8% 

A2C Model 34.3% 

SAC Model 34.7% 

DDPG Model 36.3% 

One solution implemented was a weighted average 
approach, whereby all agents distributed the portfolio's 
allocation daily. This method resulted in cumulative 
returns between the best-performing agent (DDPG, 
36.3%) and the lowest-performing agent (PPO, 29%), 
yielding an intermediate result (Proposed Method 1, 
33.1%). An alternative approach involved selecting the 
agent with the best performance over the preceding 10 
days for each working day. As Table XI illustrates, this 
Main Proposed Method significantly improved 
cumulative returns, reaching 38.2%, surpassing both 
the weighted average approach and the best individual 
agent. 

TABLE XI.  CUMULATIVE RETURNS FOR PROPOSED METHOD 1 

AND MAIN PROPOSED METHOD (MARCH 29, 2021 – MARCH 28, 
2024). 

Model Cumulative Return (%) 
PPO Model 29.0% 

TD3 Model 30.8% 

Proposed Method 1 33.1% 
A2C Model 34.3% 

SAC Model 34.7% 

DDPG Model 36.3% 

Main Proposed Method 38.2% 

The Proposed Method 1 offers a balanced decision-
making approach using the average weight of all 
factors. This method performs reasonably well with a 
cumulative return of 0.33, a Sharpe ratio of 0.74, and a 
Sortino ratio of 1.07, indicating a relative balance 
between returns and risk. Additionally, with a 
maximum drawdown of -0.17, it has managed to 
control potential losses. However, due to the fixed 
weighting, its flexibility in adapting to market changes 
is limited. In this method, the Calmar ratio of 0.57 and 
the Tail ratio of 0.99 suggest that compared to other 
models, its performance is weaker when facing long-
term and low-volume risks, as seen in Table VI. 

By adjusting the weights of factors based on past 
performance in each time step, the Main Proposed 
Method shows greater adaptability to market 
conditions. This method increases cumulative returns to 
0.38 and exhibits a better risk-adjusted performance 
with a Sharpe ratio of 0.83. Although some metrics, 
such as the annual volatility of 0.14, the Calmar ratio of 
0.69, and the Omega ratio of 1.13, are not significantly 
different from other models, its ability to reduce 
maximum drawdown to -0.16 and improve stability to 
0.63 demonstrates a more effective use of market 
opportunities. Furthermore, the Tail ratio of 1.00 and 
the Sortino ratio of 1.20 show significant improvements 
in reducing downside risks and increasing stability. 
Additionally, the kurtosis of 1.79 and skew of -0.13 
have adapted more favorably to market fluctuations and 
managed potential risks more effectively, as seen in 
Table VI. 

The system's efficacy, demonstrated through 
backtesting with Dow Jones data, indicates its potential 
for broader application across various markets and asset 
classes. However, additional research is required to 
evaluate its performance under differing economic 
conditions and ensure scalability for real-world 
implementation. Future studies should consider 
incorporating more advanced DRL agents and 
exploring refined decision-making frameworks to 
enhance portfolio optimization. These findings 
underscore the importance of dynamic, adaptive 
strategies in modern portfolio management, 
showcasing the benefits of leveraging multiple DRL 
agents for superior investment performance. 

B. Optimal Time Window for Market Adaptation 
The A2C algorithm, due to its Actor-Critic 

structure, performs better in markets with low volatility 
or weak price trends. It effectively handles gradual and 
continuous market changes, allowing for optimal 
decision-making. In contrast, PPO, known for its 
stability in policy updates, achieves the best results in 
highly volatile and unpredictable markets. By 
preventing drastic policy changes, PPO adapts well to 
sudden market fluctuations. The DDPG algorithm, 
which follows a deterministic policy, performs best in 
trending markets where changes occur gradually 
according to recognizable patterns. TD3, an improved 
version of DDPG, excels in markets with clear trends 
but significant noise. By employing two Critic 
networks to minimize errors and noise, TD3 can make 
more precise decisions under such conditions. Finally, 
leveraging entropy to balance exploration and 
exploitation, the SAC algorithm demonstrates superior 

Volume 17- Number 3 – 2025 (58-69) 

 

67 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ic
t.i

tr
c.

ac
.ir

 o
n 

20
25

-1
1-

17
 ]

 

                            10 / 12

http://ijict.itrc.ac.ir/article-1-738-en.html


performance in unstable and complex markets. SAC is 
particularly effective in environments with sudden and 
intricate fluctuations, offering high flexibility and 
responsiveness. 

Given the performance of these algorithms across 
different market conditions, a 10-day time window was 
selected for determining the optimal agent. Analyzing 
cumulative returns over various time windows (5, 10, 
15, 20, 25, and 30 days) revealed that the 10-day 
window outperformed the others. The results are 
summarized in Table XII. 

TABLE XII.  CUMULATIVE RETURNS FOR DIFFERENT TIME 

WINDOWS. 

Days Cumulative Return 

5 1.34 

10 1.38 

15 1.30 

20 1.34 

25 1.31 

30 1.27 

As shown in Table XII, the 10-day window 
achieved the highest cumulative return among all tested 
periods. This result indicates its adaptability and 
efficiency in both short-term and long-term market 
conditions. In short-term markets characterized by 
rapid fluctuations, the 10-day window enables the 
model to react quickly to new conditions and make 
optimal decisions, enhancing its resilience to extreme 
volatility. This window effectively captures gradual 
market trends in long-term markets, ensuring the model 
remains consistently aligned with evolving conditions. 

Ultimately, the findings suggest that the 10-day 
time window provides superior performance in high-
volatility and trend-driven markets. This selection 
enables the model to adapt efficiently across different 
market environments, leading to more robust and 
optimal decision-making. 

C. Research Limitation 
One limitation of this research is the exclusion of 

legal and regulatory constraints, which vary based on 
market conditions and financial regulations in different 
countries. These factors primarily impact the 
operational deployment of a trading strategy rather than 
the development of the underlying reinforcement 
learning framework. As this research focuses on 
designing an adaptive decision-making model 
applicable across various market environments, 
regulatory considerations were not explicitly 
incorporated. Instead, such constraints are more 
relevant to the practical implementation of the strategy 
on specific trading platforms, where compliance with 
market regulations is essential. 

VI.  CONCLUSION AND FUTURE WORKS 
This paper introduced a novel consulting system for 

portfolio asset allocation that leveraged deep 
reinforcement learning to enhance investment decision-
making. By integrating five distinct DRL agents (A2C, 
PPO, DDPG, TD3, and SAC) and employing a short-
term agent selection mechanism based on cumulative 
returns, the system dynamically adapted to shifting 
market conditions and significantly improved portfolio 
performance. Backtesting on historical Dow Jones 
index data demonstrated that the approach achieved an 

11.43% average annual return, 38.29% cumulative 
returns, and a Sharpe ratio of 0.832, outperforming 
individual agents and conventional strategies. 

Future enhancements to the proposed system 
include incorporating additional financial indicators 
and alternative data sources, such as sentiment analysis 
from news and social media, to achieve more 
comprehensive market insights. Expanding the system 
to accommodate other asset classes, including bonds, 
commodities, and cryptocurrencies, would increase its 
versatility. Evaluating the system's robustness and 
adaptability in fuzzy environments characterized by 
high uncertainty and market volatility presents another 
valuable avenue for research. Additionally, 
investigating the use of transfer learning to adapt 
models trained on one market to other markets could 
enhance cross-market generalization and improve 
system effectiveness. Finally, developing strategies for 
real-time implementation would enable the system to 
operate efficiently in live trading environments, 
bridging the gap between theoretical advancements and 
practical applications. 

DATA AND CODE AVAILABILITY 

This research utilizes DJIA daily stock data from 
Yahoo Finance (https://finance.yahoo.com), covering 
open, high, low, and close prices and trading volumes 
for 30 major U.S. companies. The source code and 
dataset are publicly available at https://github.com/Ma
soudKargar/APO-MADRL-STA. 
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